Wear 1997,211(1):44–53 CrossRef

13 Cheng K, Luo X, Ward

Wear 1997,211(1):44–53.CrossRef

13. Cheng K, Luo X, Ward R, Holt R: Modeling and simulation of the tool wear in nanometric cutting. Wear 2003,255(7–12):1427–1432.CrossRef 14. Narulkara R, Bukkapatnamb S, Raffc LM, Komanduria R: Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput Mater Sci 2009,45(2):358–366.CrossRef 15. Tanaka H, Shimada S, Anthony L: Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation. CIRP Ann 2007,56(1):53–56.CrossRef 16. Wang Y, Shi J, Ji C: A numerical study of residual stress induced in machined silicon surfaces by molecular dynamics simulation. Appl Phys A 2013. doi:10.1007/s00339–013–7977–8 17. Ji C, Shi J, Wang Y, Liu Z: A numeric INCB28060 solubility dmso investigation of friction behaviors along tool/chip interface in nanometric selleck inhibitor machining of a single crystal copper structure. Int J Adv Manuf Technol 2013, 68:365–374.CrossRef 18.

Lin ZC, Huang JC: A nano-orthogonal cutting model based on a modified molecular dynamics technique. Nanotechnology 2004,15(5):510.CrossRef 19. Obikawa T, Postek MT, Dornfeld D, Liu CR, Komanduri R, Guo Y, Shi J, Cao J, Zhou J, Yang X, Li X: Micro/nano-technology applications for manufacturing systems and processes. In Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference: October 4–7, 2009. selleck compound West Lafayette: CD-ROM; 2009. 20. Shi J, Verma M: Comparing atomistic HSP90 machining of monocrystalline and polycrystalline copper structures. Mater Manuf Process 2011,26(8):1004–1010.CrossRef 21. Yang B, Vehoff H: Dependence

of nanohardness upon indentation size and grain size – a local examination of the interaction between dislocations and grain boundaries. Acta Mater 2007,55(3):849–856.CrossRef 22. Zhang K, Weertman JR, Eastman JA: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl Phys Let 2004,85(22):5197–5199.CrossRef 23. Li M, Reece MJ: Influence of grain size on the indentation‒fatigue behavior of alumina. J Am Ceram Soc 2000,83(4):967–970.CrossRef 24. Lim YY, Chaudhri MM: The influence of grain size on the indentation hardness of high-purity copper and aluminium. Philosoph Magazine A 2002,82(10):2071–2080.CrossRef 25. Jang H, Farkas D: Interaction of lattice dislocations with a grain boundary during nanoindentation simulation. Mater Lett 2007,61(3):868–871.CrossRef 26. Zapol P, Sternberg M, Curtiss LA, Frauenheim T, Gruen DM: Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries. Phys Rev B 2001,65(4):045403.CrossRef 27. Li J: AtomEye: an efficient atomistic configuration viewer. Model Simul Mater Sci Engine 2003, 11:173–177.CrossRef 28. LAMMPS Molecular Dynamics Simulator. http://​lammps.​sandia.​gov/​ 29. Morse PM: Diatomic molecules according to the wave mechanics. II.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>