Our results suggest that activation of A-fiber primary afferents inhibits C-fiber inputs to the MDH by the way of polysynaptic excitatory pathways, last-order GABAergic interneurons and presynaptic GABAB Adriamycin receptors on C-fiber primary afferents. Under physiological conditions, activation of such local DH circuits is closely controlled by segmental inhibition but it might contribute to paradoxically reduced pain hypersensitivity under pathological disinhibition. “
“Modulation of thalamocortical (TC) relay neuron function has been implicated in the sedative and hypnotic effects of general anaesthetics. Inhibition of TC neurons is mediated predominantly by a combination of phasic and
tonic inhibition, together with a recently described ‘spillover’ mode of inhibition, generated by the dynamic recruitment of extrasynaptic γ-aminobutyric acid (GABA)A receptors (GABAARs). Previous studies demonstrated that the intravenous anaesthetic etomidate enhances tonic and phasic inhibition in TC relay neurons, but it is not known how etomidate may influence spillover inhibition. Moreover, it is unclear how etomidate influences the excitability of TC neurons. Thus, to investigate the relative contribution of synaptic (α1β2γ2) and extrasynaptic (α4β2δ) GABAARs to the thalamic effects of etomidate, we performed whole-cell recordings from mouse TC neurons lacking synaptic (α10/0) or extrasynaptic (δ0/0) GABAARs.
Etomidate (3 μm) significantly inhibited action-potential discharge in a manner that was dependent on facilitation of both synaptic and extrasynaptic Tyrosine-protein kinase BLK Metformin GABAARs, although enhanced tonic inhibition was dominant in this respect. Additionally,
phasic inhibition evoked by stimulation of the nucleus reticularis exhibited a spillover component mediated by δ-GABAARs, which was significantly prolonged in the presence of etomidate. Thus, etomidate greatly enhanced the transient suppression of TC spike trains by evoked inhibitory postsynaptic potentials. Collectively, these results suggest that the deactivation of thalamus observed during etomidate-induced anaesthesia involves potentiation of tonic and phasic inhibition, and implicate amplification of spillover inhibition as a novel mechanism to regulate the gating of sensory information through the thalamus during anaesthetic states. “
“A rich pattern of responses in frequency, time and space are known to be generated in the visual cortex in response to faces. Recently, a number of studies have used magnetoencephalography (MEG) to try to record these responses non-invasively – in many cases using source analysis techniques based on the beamforming method. Here we sought both to characterize best practice for measuring face-specific responses using MEG beamforming, and to determine whether the results produced by the beamformer match evidence from other modalities.