This conclusion is perhaps intuitive, but has to the best of our knowledge not been demonstrated for antibiotic resistance-encoding plasmids. One might expect this to be the case based on previous work by Dahlberg and Chao, who showed that amelioration of Mdm2 antagonist fitness costs conferred by the plasmids R1 and RP4 (very similar to plasmid RP1 used here) on E. coli K12 J53 depended on genetic changes in the host chromosome, thus implying a host genome component is involved in determining plasmid-encoded fitness cost [19]. Similarly, the fitness cost and stability of the plasmid pB10 was highly variable in strains of different species [28, 29]. Previous studies have also shown that target mutations leading
to antibiotic resistance, for example gyrA mutations in Campylobacter jejuni or 23S rRNA mutations leading to clarithromycin resistance in Helicobacter pylori have different fitness effects in different host backgrounds BAY 63-2521 [30, 31]. It is not currently known which ARS-1620 molecular weight host genetic components may be important for determining the effect a plasmid will have on host fitness and it is likely that these will vary depending on the host-plasmid combination concerned. This finding has important implications for anyone wishing to use fitness cost as a parameter to model the spread or decline of a given plasmid in a bacterial population, perhaps in response to changes in antimicrobial selection, as it highlights
the need to determine fitness in several different host genetic backgrounds. Similarly, recent work has also shown that fitness cost of antimicrobial resistance is variable depending on the growth conditions used in laboratory measurements [25, 32], re-iterating the
need for multiple measurements to obtain accurate fitness cost estimates. DNA sequence analysis of N3 Despite being a well-studied archetypal plasmid isolated in the 1960s, the DNA sequence of the IncN plasmid N3 has not previously been reported [33]. Sequence analysis revealed that it is 54 205 bp in length, has a GC content of 51.1% and encodes 62 putative open reading frames (Table 2). It shares a common backbone with other IncN plasmids such as R46 [34] and the recently described multiple antibiotic resistance plasmid pKOX105 [3] (Figure 1). The Acesulfame Potassium shared region comprises the plasmid’s replication and transfer functions as well as genes encoding stable inheritance, anti-restriction and UV protection functions. N3 also encodes a class 1 integron and, in common with pKOX105 but lacking from R46, a type 1 restriction modification system. This characteristic and the high sequence identity shown between a number of proteins encoded by the two plasmids suggests pKOX105 may have evolved from a N3-like ancestor. N3 also encodes a unique region absent from other known IncN plasmids, bordered by IS26 elements. This comprises the tet(A) genes for tetracycline resistance, a putative bacA-like bacitracin resistance gene and seven novel genes.