Gene
1989,77(1):61–68.PubMedCrossRef 55. Beaber JW, Hochhut B, Waldor MK: SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004,427(6969):72–74.PubMedCrossRef 56. Guerin E, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da Re S, Gonzalez-Zorn B, Barbe J, Ploy MC, Mazel D: The SOS response controls integron recombination. Science 2009,324(5930):1034.PubMedCrossRef 57. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, et al.: DNA sequence of both chromosomes of the Epacadostat in vitro cholera pathogen Vibrio cholerae. Nature 2000,406(6795):477–483.PubMedCrossRef 58. O’Shea YA, Finnan S, Reen FJ, Morrissey JP, O’Gara F, Boyd EF: The Vibrio seventh pandemic island-II is a 26.9 kb genomic island present in Vibrio cholerae El Tor and O139 serogroup isolates that shows homology to a 43.4 kb genomic island in V. vulnificus. Microbiology 2004,150(Pt 12):4053–4063.PubMedCrossRef
Defactinib clinical trial 59. Philippe N, Alcaraz JP, Coursange E, Geiselmann J, Schneider D: Improvement of pCVD442, a suicide plasmid for gene allele exchange in see more bacteria. Plasmid 2004,51(3):246–255.PubMedCrossRef 60. Guzman LM, Belin D, Carson MJ, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995,177(14):4121–4130.PubMed Authors’ contributions EFB designed the research; SA-M and MGN performed the research; SA-M, MGN and EFB analyzed data; SA-M, MGN and EFB wrote the paper.”
“Background Burkholderia pseudomallei is an environmental Silibinin Gram-negative bacterium that causes a severe and often fatal disease called melioidosis. This is an important cause of sepsis in south-east Asia and northern Australia, a geographic distribution that mirrors the presence of B. pseudomallei in the environment [1]. Melioidosis may develop following bacterial inoculation or inhalation
and occurs most often in people with regular contact with contaminated soil and water [1]. Clinical manifestations of melioidosis are highly variable and range from fulminant septicemia to mild localized infection. The overall mortality rate is 40% in northeast Thailand (rising to 90% in patients with severe sepsis) and 20% in northern Australia [1, 2]. A major feature of melioidosis is that bacterial eradication is difficult to achieve. Fever clearance time is often prolonged (median 8 days), antimicrobial therapy is required for 12-20 weeks, and relapse occurs in around 10% of patients despite an appropriate course of antimicrobial therapy [3, 4]. The basis for persistence in the infected human host is unknown, although several observations made to date may be relevant to the clinical behaviour of this organism [2, 5]. B. pseudomallei can resist the action of bactericidal substances including complement and antimicrobial peptides in human serum [6–8]. B. pseudomallei can also survive after uptake by a range of phagocytic and non-phagocytic cells.