552117035) “
“The mouse trigeminal (V) system undergoes s

552.11.7035). “
“The mouse trigeminal (V) system undergoes significant postnatal structural and functional developmental changes. Histological modules (barrelettes, barreloids and barrels) in the brainstem, thalamus and cortex related to actively moved (whisking) tactile hairs (vibrissae) on the face allow detailed studies of development. High-resolution [3H]2-deoxyglucose (2DG) emulsion autoradiography with cytochrome oxidase histochemistry was used to analyze neuronal activity changes related

to specific whisker modules in the developing and mature mouse V system provoked by passive (experimenter-induced) and active (animal-induced) displacements of a single whisker (D4). We tested the hypothesis that neuronal activity patterns change in relation to the onset of active touch (whisking) on postnatal day (P)14. Quantitative image analyses revealed: (i) on P7, when whisker-like patterns of PARP inhibitor modules are clear, heightened Trametinib clinical trial 2DG activity in all appropriate modules in the brainstem, thalamus and cortex; (ii) on P14, a transitory activity pattern coincident with the emergence of whisking behavior that presages (iii) strong labeling of the spinal V subnucleus interpolaris

and barrel cortex produced by single-whisker-mediated active touch in adults and (iv) at all above-listed ages and structures, significant suppression of baseline activity in some modules surrounding those representing the stimulated whisker. Differences in activity patterns before and after the onset of whisking behavior may be caused by neuronal activity induced by whisking, and by strengthening of modulatory projections that alter the activity of subcortical inputs produced by whisking behavior during active touch. “
“We previously showed that a positive covariability between intracortical excitatory synaptic actions onto the two layer three pyramidal cells (PCs) located in mutually adjacent columns is changed into a negative covariability by column-wise presynaptic inhibition of intracortical inputs, implicated

as a basis for the desynchronization of inter-columnar synaptic actions. Here we investigated how the inter-columnar desynchronization is modulated by the strength of presynaptic inhibition or other factors, by using a mathematical model. Based on our previous findings on the paired-pulse selleck compound depression (PPD) of intracortical excitatory postsynaptic currents (EPSCs) evoked in PCs located in the stimulated home column (HC) but no PPD in PCs located in the adjacent column (AC), a mathematical model of synaptic connections between PCs and inhibitory interneurons was constructed. When the paired-pulse ratio (PPR) was decreased beyond 0.80, the correlation coefficient between the two second EPSC amplitudes in the paired PCs located in the HC and AC and that in the paired PCs located in the same HC exhibited opposite changes, and reached a global negative maximum and local positive maximum, respectively, at almost the same PPR (0.40).

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>