(C) 2013 Elsevier Ltd All rights reserved “
“Porous calcium

(C) 2013 Elsevier Ltd. All rights reserved.”
“Porous calcium phosphate pellets were produced according to two granulation processes (low and high shear wet granulations) and drug loaded with five ibuprofen contents (1.75%, 7%, 12.5%, 22%, and 36%) in order to ensure both bone defect filling and local drug delivery. The drug-release kinetics from the two types of pellets was studied using three dissolution apparatuses:

EVP4593 paddle apparatus, reciprocating cylinder, and flow-through cell. The paper compared the three dissolution methods and considered the effect of the granulation process on the ibuprofen-release kinetics. Dissolution data were analyzed using the Weibull function as well as the difference (f1) and similarity (f2) factors. Dissolution kinetics was not influenced by the granulation process, regardless of the dissolution apparatus and of the drug content. The comparison of the three dissolution devices indicated that ibuprofen was released faster from granules loaded with 36% of drug content with the reciprocating apparatus, due to the disintegration of the granules occurring during the dissolution test. For the other drug contents, dissolution profiles were not significantly different from one apparatus to another. However, KPT-8602 purchase the flow-through cell seemed to be more suitable for the drug-release

study of implantable materials.”
“Zinc(II) complex (3) bis(3-ethoxy-2-hydroxy-benzylidene)-N,N’-bis(2,2-dimethyl-3-aminopropyl) ethylenediamine-zinc(II); [(3-OEt-ENBDMPI)Zn(II)] was obtained in situ by a ligand exchange reaction involving zinc(II) acetylacetonate and the Schiff-base ligand obtained in situ. For assessing ability of 3 to act as a transport substrate of multidrug resistance (MDR1) P-glycoprotein (Pgp), its cytotoxic activity was evaluated in human epidermal carcinoma drug-sensitive KB 3-1 (Pgp-) and drug

resistant KB 8-5 (Pgp+) cells. Compared with its cationic gallium(III) counterpart 4 showing cytotoxicity profiles consistent with its recognition as a Pgp substrate, the neutral zinc(II) LY333531 complex 3 did not display cytotoxicity profiles (at pharmacologically relevant concentrations < 10 mu M) modified by expression of Pgp. Further, 3 was found be slightly more toxic against KB 8-5 cells compared to KB 3-1 cells at higher concentration. The neutral zinc (II) complex 3 was also found to be considerably less toxic against Pgp-lacking cells compared to its cationic gallium( III) counterpart 4. Additionally, the neutral zinc(II) complex 3 demonstrated considerably more toxicity against Pgp expressing KB 8-5 cells (> 10 mu M) compared with its cationic counterpart 4 displaying minimal effect at highest concentration.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>