The dotted line corresponds to the expression value in the contro

The dotted line corresponds to the expression value in the control condition. The error bars correspond to standard deviation (n = 3). The negative values on the y-axis denote decreases relative to the control. Discussion Carotenogenesis in X. dendrorhous is a complex process with regulatory mechanisms that have not been fully elucidated. Several studies have reported that the amount and composition of carotenoids may be greatly modified depending on the carbon source used [12–14, 29, 30]. A common observation

is that the synthesis of MK-8931 pigments is particularly low at glucose concentrations greater than 15 g/l [12, 13, 31]. However, until this study, there was no available data on how glucose exerts its repressive effect on carotenogenesis. {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| The results obtained in this work show that glucose has a regulatory effect on the expression of several genes

in X. dendrorhous, as has been shown in other yeasts. The mRNA levels of the grg2 gene decreased dramatically when glucose was added to the culture. Moreover, the PDC gene was induced by glucose, as it is in the majority of phylogenetically related organisms [22–25]. In addition, we found that adding glucose to the media caused a decrease in the mRNA levels of all of the carotenogenesis genes involved in the synthesis of astaxanthin from GGPP. In the majority of these experiments, the effect of glucose reached its maximum between selleck chemical 2 and 4 h after addition. By 24 h after glucose addition, mRNA levels returned to baseline. No data were collected between 6 and 24 h after the addition of the sugar, but in most cases the recovery was estimated to occur

completely within the first 8 h after the addition of glucose. Furthermore, the remaining glucose determinations showed that the kinetics of sugar consumption was slower than the return to basal gene expression levels. This finding suggests some type of adaptation mechanism, which over time diminishes the transcriptional response to the presence of glucose. The global effect of glucose on the carotenogenesis pathway may be related to the presence of binding sites for the MIG1 general catabolic repressor in the promoter regions of the crtS [7], crtYB and crtI genes [32]. Such sites are also present Oxymatrine in the promoter region of the grg2 gene (unpublished data), suggesting that a homolog of the MIG1 regulator may mediate the glucose repression of these genes. However, further studies are needed to demonstrate the functionality and importance of these elements. Interestingly, the repressive effect of glucose on crtYB and crtI is manifested in different ways on the alternative and mature transcripts of these genes. Considering that both transcripts of each gene come from a single transcriptional unit, their different expressions suggest the involvement of post-transcriptional regulatory mechanisms.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>